ecoETI Theme: Purpose-grown woody biomass production - 2010/11 Progress Report -

Short-Rotation Biomass Production in Native Willows

Team members: Alex Mosseler, Michel Labrecque, and Bill Schroeder

Objectives – (eco-ETI, 2008-2011):

- 1. Locate natural populations of promising native willows for field testing in common garden tests
- 2. Quantify variation in biomass yield and quality traits in native willows
- 3. Select and distribute superior clones of high-yielding willows & assist in further field-testing

Objectives – (Clean Energy Fund, 2010-2012):

- 1. Test, select, and distribute superior willow clones adapted to mine site conditions
- 2. Assist in further field testing and mine site restoration

Some key questions in testing Canada's native willows:

- What are the biomass yields in native willows compared with selected exotic species/clones?
- How can genetic variation within and between species be exploited to select superior clones?
- What biomass yield and quality traits deserve special attention for selection/breeding?
- Can we develop a set of superior clones adapted over a wide range of site types?

The genus Salix (willows) from a global perspective...

- 350 willow species worldwide mostly in the northern hemisphere
- 76 willow species native to Canada
- Willows occupy a wide range of site types in Canada
- Only about 220 native woody perennial species in Canada

An exotic willow Salix fragilis on a floodplain in Chile

Native willow species of interest for biomass production

Salix species	Habit and height	Site type	
S. amygdaloides	8-15 m tree	edges of poorly-drained, standing wetlands	
S. bebbiana	4-6 m shrub/small tree	seepage slopes, ditches, upland sites	
S. discolor	4-10 m shrub/small tree	seepage slopes, wetlands, & ditches	
S. eriocephala	4-6 m shrub	fast-flowing stream banks	
S. interior	4-6 m shrub	river banks, sandbars, floodplains, & gravel pits	
S. humilis	1-2 m shrub	well-drained upland sites & forest openings	
S. nigra	10-12 m tree	riparian habitats (river banks & floodplains)	

Wetland population of Salix bebbiana, S. petiolaris and S. discolor

Salix humilis on a dry, rocky oak-pine ridge

Progress on activities & deliverables in 2010/2011 for eco-ETI

- Established four new field tests in 2010 (waste management facility, blueberry fields, mine sites)
- Harvested 1 and 2-year-old coppice growth from selected clones from two tests at Montreal Botanical Gardens
- Assessed rooting ability in difficult-to-root *S. bebbiana* and *S. humilis,* and collected cuttings from selected clones
- Collected pollinator species from 7-species willow test at AFC for pollinator diversity studies
- Maintained field tests

Field tests established along shoreline with best clones from seven species

Oven-dry biomass weight (kg), moisture content & shoot specific gravity of 2-year-old and 1-year-old coppice stems of native willows at Montreal Botanical Gardens (harvested 2010)

Salix species	No. of clones	Percent moisture	Oven-dry biomass	Shoot specific gravity
		content	mean (range)	mean
2-year-old coppice:	<u></u>			·····
S. viminalis	1	51.5	6.66	0.43
S. discolor	9	52.5	2.40 (1.55-4.77)	0.41
S. eriocephala	8	49.3	3.73 (2.23- 4.67)	0.45
1-year-old coppice:				
S. amygdaloides	8	55.2	1.24 (0.95-1.58)	0.41
S. interior	9	54.2	1.77 (1.60-2.28)	0.41
S. nigra	8	51.7	1.11 (0.76-1.79)	0.42
			Montreal Botanical	
			Gardens fieldtest	

Survival of seven willow species on abandoned coal mine site

• 5 random genotypes from each of 4 natural populations

• rooting success correlated with habitat preferences

Species	No. of clones	No. of cuttings	Species mean % survival	Range in % survival among clones	% survival MBG select clones
S. amygdaloides	20	300	27	0 – 53	· · · · · · · · · · · · · · · · · · ·
S. bebbiana**	19	260	5	0 – 40	
S. discolor**	19	255	13	0 – 40	68% (12 clones)
S. eriocephala*	16	235	66	0 – 100	97% (24 clones)
S. humilis**	19	285	11	0 – 60	
S. interior*	20	295	46	0 – 93	
S. nigra*	19	275	41	0 – 93	
*riparian species	**non-rip	barian spec	cies		
				NB Coal Ltd	

Progress on activities & deliverables in 2010/2011 for CEF

- Collected cuttings from selected, superior clones from established field tests and from natural populations for further field testing on mine sites in 2011 and 2012 (Richard Krygier NRCan)
- Presented possibilities for mine site restoration to representatives of mining industry in Sudbury, ON (Bryan Tisch – CANMET)
- Initiated collaborative study on ploidy levels in *Salix* spp. (Stewart Cameron NRCan)
- Continued with identification of willow pollinator species collected in 2010 (Don Ostaff – NRCan)

Restoration of NB Coal Ltd. mine sites with native willows

Stream siltation on mine sites

Two-year-old plants of *S. amygdaloides* and *S. interior*

Five different willow species used along water courses

Stream bank stabilization with colony-forming Salix interior

Two-year-old plants from unrooted cuttings

Salix interior spreading along stream banks via stem-suckering from lateral roots

Some conclusions based on preliminary studies of native Salix

- Most genetic variation (or differences) in traits resides among species and among clones within a population; relatively little variation among regions or populations (for most traits)
- Yields of 15-20 O.D.T./ha/a based on one-year-old coppice growth are possible
- Wood specific gravity is highly variable both among and within species & a potentially important trait for clonal selection and improvement
- Rooting ability is highly variable both within and among species, important to biomass yields, and clonal selection for improved rooting ability is an important breeding objective
- Riparian willow species root more quickly and more prolifically than non-riparian willows
- Herbivory by mice, voles, rabbits, deer & moose can cause serious growth losses on willows

Deer-browsed cuttings at NB Coal site

Activities and deliverables planned for 2011-2012 under the Clean Energy Fund (CEF) project

- Establish field tests on mine sites in Ontario in collaboration with CANMET (Bryan Tisch)
- Establish glasshouse tests in collaboration with NRCan-Edmonton (Richard Krygier) to assess selected willow species for oil sands restoration
- Establish a test of 8 selected clones of S. interior for bio-remediation of toxic landfill sites
- Identify pollinator species associated with seven willow species being tested
- Continuation of ploidy analysis for sterile hybrid breeding
- Continue maintaining field tests and assessing biomass production

Variations in water levels on mine sites

Objectives for 2011 and beyond...

- Continuation of species testing & clonal selection aimed at expanding range of site types available for SRIC with willows (e.g., *S. bebbiana & S. humilis* for drier sites)
- Clonal selection and breeding for specific traits, chemicals, products, plant form, etc.
- Develop sterile hybrids for genetic engineering of traits
- Demonstrations of ecological restoration (habitat, water quality, erosion control, mine sites, etc.)
- Native willows as a foraging resource for pollinators
- Inter-specific hybridization to capture hybrid vigour & specific traits

